Analysis of the Dynamical System x˙(t) = A x(t) +h(t, x(t)), x(t0) = x0 in a Special Time-Dependent Norm

Autor: Ludwig Kohaupt
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Communications in Advanced Mathematical Sciences, Vol 2, Iss 1, Pp 27-47 (2019)
Druh dokumentu: article
ISSN: 2651-4001
DOI: 10.33434/cams.460724
Popis: As the main new result, we show that one can construct a time-dependent positive definite matrix $R(t,t_0)$ such that the solution $x(t)$ of the initial value problem $\dot{x}(t)=A\,x(t)+h(t,x(t)), \; x(t_0)=x_0,$ under certain conditions satisfies the equation $\|x(t)\|_{R(t,t_0)} = \|x_A(t)\|_R$ where $x_A(t)$ is the solution of the above IVP when $h \equiv 0$ and $R$ is a constant positive definite matrix constructed from the eigenvectors and principal vectors of $A$ and $A^{\ast}$ and where $\|\cdot\|_{R(t,t_0)}$ and $\|\cdot\|_R$ are weighted norms. Applications are made to dynamical systems, and numerical examples underpin the theoretical findings.
Databáze: Directory of Open Access Journals