Exploring the role of different cell types on cortical folding in the developing human brain through computational modeling

Autor: Mohammad Saeed Zarzor, Qiang Ma, Median Almurey, Bernhard Kainz, Silvia Budday
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-24 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-75952-7
Popis: Abstract The human brain’s distinctive folding pattern has attracted the attention of researchers from different fields. Neuroscientists have provided insights into the role of four fundamental cell types crucial during embryonic development: radial glial cells, intermediate progenitor cells, outer radial glial cells, and neurons. Understanding the mechanisms by which these cell types influence the number of cortical neurons and the emerging cortical folding pattern necessitates accounting for the mechanical forces that drive the cortical folding process. Our research aims to explore the correlation between biological processes and mechanical forces through computational modeling. We introduce cell-density fields, characterized by a system of advection-diffusion equations, designed to replicate the characteristic behaviors of various cell types in the developing brain. Concurrently, we adopt the theory of finite growth to describe cortex expansion driven by increasing cell density. Our model serves as an adjustable tool for understanding how the behavior of individual cell types reflects normal and abnormal folding patterns. Through comparison with magnetic resonance images of the fetal brain, we explore the correlation between morphological changes and underlying cellular mechanisms. Moreover, our model sheds light on the spatiotemporal relationships among different cell types in the human brain and enables cellular deconvolution of histological sections.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje