Autor: |
Constantine D. Mavroudis, Tiffany S. Ko, Ryan W. Morgan, Lindsay E. Volk, William P. Landis, Benjamin Smood, Rui Xiao, Marco Hefti, Timothy W. Boorady, Alexandra Marquez, Michael Karlsson, Daniel J. Licht, Vinay M. Nadkarni, Robert A. Berg, Robert M. Sutton, Todd J. Kilbaugh |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Critical Care, Vol 24, Iss 1, Pp 1-13 (2020) |
Druh dokumentu: |
article |
ISSN: |
1364-8535 |
DOI: |
10.1186/s13054-020-03297-4 |
Popis: |
Abstract Background Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. Methods One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10–20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. Results With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|