Addressing up-scaling methodologies for convection-permitting EPSs using statistical and machine learning tools
Autor: | T. Comito, C. Clancy, C. Daly, A. Hally |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Advances in Science and Research, Vol 18, Pp 145-156 (2021) |
Druh dokumentu: | article |
ISSN: | 1992-0628 1992-0636 |
DOI: | 10.5194/asr-18-145-2021 |
Popis: | Convection-permitting weather forecasting models allow for prediction of rainfall events with increasing levels of detail. However, the high resolutions used can create problems and introduce the so-called “double penalty” problem when attempting to verify the forecast accuracy. Post-processing within an ensemble prediction system can help to overcome these issues. In this paper, two new up-scaling algorithms based on Machine Learning and Statistical approaches are proposed and tested. The aim of these tools is to enhance the skill and value of the forecasts and to provide a better tool for forecasters to predict severe weather. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |