Popis: |
The purpose of this study was to evaluate the degree of demineralization of artificially induced caries-affected human dentin by an in vitro microbiological method. The occlusal surfaces of 6 human molar teeth were abraded until a flat surface was obtained, and the enamel was removed to expose the occlusal dentin surface. These teeth were sectioned in 12 halves in the vestibular-lingual direction and divided into 3 groups according to the period length of the microbiological essay (n = 4): G1, 7 days; G2, 14 days; and G3, 21 days. The surfaces of all specimens were protected by an acid-resistant nail varnish, except for a window where the caries lesion was induced by a Streptoccocus mutans biofilm in a batch-culture model supplemented with 5% sucrose. The specimens were then analyzed by optical coherence tomography (OCT) with a super-luminescent light diode (Λ = 930 nm) with 6.0-µm lateral and longitudinal resolution (in the air). Qualitative and quantitative results (images and average dentin demineralization, respectively) were obtained. The mean demineralization depths were (µm) 235 ± 31.4, 279 ± 14, and 271 ± 8.3 in groups 1, 2, and 3, respectively. In addition, no significant change was observed in the lesion mean depth from 7 days of cariogenic challenge on. In conclusion, OCT was shown to be an efficient and non-invasive method to detect the depths of lesions caused by demineralization. Further, a seven-day demineralization time was considered sufficient for caries-affected dentin to be obtained. |