Heat transfer and flow characterisation of aircraft heat exchangers considering manufacturing constraints
Autor: | Lei Mingjun, Wan Shuting, Yu Xiaoying |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Applied Mathematics and Nonlinear Sciences, Vol 9, Iss 1 (2024) |
Druh dokumentu: | article |
ISSN: | 2444-8656 2024-1429 |
DOI: | 10.2478/amns-2024-1429 |
Popis: | With the progress and development of the times, the traditional aircraft power system and difficult to meet the needs of the current aviation development, for the aircraft power and heat exchanger research has been more and more extensive attention. This study takes the heat exchanger of the aircraft loop control system as an example, constructs the thermal management system of the aircraft according to the mechanism of its heat transfer and flow characteristics, and optimizes it under the consideration of manufacturing constraints. Based on the theory of fluid mechanics, the aircraft heat exchanger is simulated, and control equations based on heat transfer and flow characteristics are established. In this paper, the temperature difference of the heat exchanger is increased by 6.5°C and 5.4°C, respectively, and the heat transfer coefficient is between 11 and 14 kW/m²k. Furthermore, the fluid temperature has risen from 0.05 to 0.5 to 0.30 to 0.87 with the increase in flow rate. The maximum deviation values were 8.3%, 6.7%, and 8.6%, respectively, and the confidence intervals were all above 90%. This study can effectively improve the efficiency of aircraft heat exchangers compared to traditional heat exchangers and has more advantages in heat transfer performance, which provides a reference value for the development of the aviation field. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |