Effective classification of alzheimer disease based on image tractography framework utilizing GM-ABC-NN
Autor: | V. Sanjay, P. Swarnalatha |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: |
Cauchy-Steiner Weighted Fuzzy C Means (CauSt-FCM)
Cosine Non-negative Kernel Regression (CosNNK) Gaussian Mixture Alpha-Beta Convolutional Neural Network (GM-ABC-NN) Premature Singer Archerfish Hunting Optimizer (PreS-AHO) Alzheimer's disease Deep learning Engineering (General). Civil engineering (General) TA1-2040 |
Zdroj: | Alexandria Engineering Journal, Vol 93, Iss , Pp 336-347 (2024) |
Druh dokumentu: | article |
ISSN: | 1110-0168 |
DOI: | 10.1016/j.aej.2024.03.008 |
Popis: | A progressive neurological disorder that leads to memory loss as well as cognitive decline is called Alzheimer’s Disease (AD). Grounded on various factors like symptoms, biomarkers, or disease stages, the classification of AD is done. Yet, the prevailing techniques pose challenges in capturing accurate AD, which results in misdiagnosis or delayed treatment. To overcome these issues, an effective framework for the classification of AD based on image tractography using several algorithms is proposed in this article. Primarily, the dataset comprising AD images undergoes image transformation. Then, to enhance the MRI image quality, the transformed images are pre-processed using Block Matching 3D Filtering (BM3D) and Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithms. Afterward, image tractography followed by brain tissue segmentation is done utilizing the Cauchy-Steiner Weighted Fuzzy C Means (CauSt-FCM) algorithm. Then, by utilizing the Cosine Non-Negative Kernel Regression (CosNNK) algorithm, graph construction is done. Lastly, for the feature selection and validation process, the Premature Singer Archerfish Hunting Optimizer (PreS-AHO) algorithm and Analysis of Variance (ANOVA) analysis are used. Thereafter, the AD stages are classified by using the Gaussian Mixture Alpha-Beta Convolutional Neural Network (GM-ABC-NN) algorithm, The proposed system attains superior accuracy (97.56%), precision (97.55%), and recall (97.57%). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |