Popis: |
BackgroundInternet search volume for medical information, as tracked by Google Trends, has been used to demonstrate unexpected seasonality in the symptom burden of a variety of medical conditions. However, when more technical medical language is used (eg, diagnoses), we believe that this technique is confounded by the cyclic, school year–driven internet search patterns of health care students. ObjectiveThis study aimed to (1) demonstrate that artificial “academic cycling” of Google Trends’ search volume is present in many health care terms, (2) demonstrate how signal processing techniques can be used to filter academic cycling out of Google Trends data, and (3) apply this filtering technique to some clinically relevant examples. MethodsWe obtained the Google Trends search volume data for a variety of academic terms demonstrating strong academic cycling and used a Fourier analysis technique to (1) identify the frequency domain fingerprint of this modulating pattern in one particularly strong example, and (2) filter that pattern out of the original data. After this illustrative example, we then applied the same filtering technique to internet searches for information on 3 medical conditions believed to have true seasonal modulation (myocardial infarction, hypertension, and depression), and all bacterial genus terms within a common medical microbiology textbook. ResultsAcademic cycling explains much of the seasonal variation in internet search volume for many technically oriented search terms, including the bacterial genus term [“Staphylococcus”], for which academic cycling explained 73.8% of the variability in search volume (using the squared Spearman rank correlation coefficient, P |