Convergence on Population Dynamics and High-Dimensional Haddock Conjecture

Autor: Wenke Wang, Le Li, Xuejun Yi, Chuangxia Huang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Symmetry, Vol 13, Iss 12, p 2252 (2021)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym13122252
Popis: One fundamental step towards grasping the global dynamic structure of a population system involves characterizing the convergence behavior (specifically, how to characterize the convergence behavior). This paper focuses on the neutral functional differential equations arising from population dynamics. With the help of monotonicity techniques and functional methods, we analyze the subtle relations of both the ω-limited set and special point. Meanwhile, we prove that every bounded solution converges to a constant vector, as t tends to positive infinity. Our results correlate with the findings from earlier publications, and our proof yields an improved Haddock conjecture.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje