Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design

Autor: Keiichi Inoue, Masayuki Karasuyama, Ryoko Nakamura, Masae Konno, Daichi Yamada, Kentaro Mannen, Takashi Nagata, Yu Inatsu, Hiromu Yawo, Kei Yura, Oded Béjà, Hideki Kandori, Ichiro Takeuchi
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Druh dokumentu: article
ISSN: 2399-3642
DOI: 10.1038/s42003-021-01878-9
Popis: Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje