Complexity Analysis of Primal-Dual Interior-Point Methods for Linear Optimization Based on a New Parametric Kernel Function with a Trigonometric Barrier Term

Autor: X. Z. Cai, G. Q. Wang, M. El Ghami, Y. J. Yue
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Abstract and Applied Analysis, Vol 2014 (2014)
Druh dokumentu: article
ISSN: 1085-3375
1687-0409
DOI: 10.1155/2014/710158
Popis: We introduce a new parametric kernel function, which is a combination of the classic kernel function and a trigonometric barrier term, and present various properties of this new kernel function. A class of large- and small-update primal-dual interior-point methods for linear optimization based on this parametric kernel function is proposed. By utilizing the feature of the parametric kernel function, we derive the iteration bounds for large-update methods, O(n2/3log⁡(n/ε)), and small-update methods, O(nlog⁡(n/ε)). These results match the currently best known iteration bounds for large- and small-update methods based on the trigonometric kernel functions.
Databáze: Directory of Open Access Journals