Autor: |
Gen Li, Nienju Wu, Jiong Zhang, Yanyan Song, Tingjun Ye, Yin Zhang, Dahang Zhao, Pei Yu, Lei Wang, Chengyu Zhuang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 10, Iss 15, Pp e35451- (2024) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2024.e35451 |
Popis: |
Background: Patients with fractures of the proximal humerus often local complications and failures attributed to osteoporosis. Currently, there is a lack of straight forward screening methods for assessing the extent of local osteoporosis in the proximal humerus. This study utilizes machine learning techniques to establish a diagnostic approach for evaluating local osteoporosis by analyzing the patient's demographic data, bone density, and X-ray ratio of the proximal humerus. Methods: A cohort comprising a total of 102 hospitalized patients admitted during the period spanning from 2021 to 2023 underwent random selection procedures. Resulting in exclusion of 5 patients while enrolling 97 patients for analysis encompassing patient demographics, shoulder joint anteroposterior radiographs, and bone density information. Using the modified Tingart index methodology involving multiple measurements denoted as M1 through M4 obtained from humeral shafts. Within this cohort comprised 76 females (78.4 %) and 21 males (21.6 %), with an average age of 73.0 years (range: 43–98 years). There were 25 cases with normal bone density, 35 with osteopenia, and 37 with osteoporosis. Machine learning techniques were used to randomly divide the 97 cases into training (n = 59) and validation (n = 38) sets with a ratio of 6:4 using stratified random sampling. A decision tree model was built in the training set, and significant diagnostic indicators were selected, with the performance of the decision tree evaluated using the validation set. Multinomial logistic regression methods were used to verify the strength of the relationship between the selected indicators and osteoporosis. Results: The decision tree identified significant diagnostic indicators as the humeral shaft medullary cavity ratio M2/M4, age, and gender. M2/M4 ≥ 1.13 can be used as an important screening criterion; M2/M4 < 1.13 was predicted as local osteoporosis; M2/M4 ≥ 1.13 and age ≥83 years were also predicted as osteoporosis. M2/M4 ≥ 1.13 and age |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|