Autor: |
Maria O. Riazantseva, Timofey V. Treves, Olga Khabarova, Liudmila S. Rakhmanova, Yuri I. Yermolaev, Alexander A. Khokhlachev |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Universe, Vol 10, Iss 11, p 417 (2024) |
Druh dokumentu: |
article |
ISSN: |
2218-1997 |
DOI: |
10.3390/universe10110417 |
Popis: |
The study aims to understand the role of solar wind current sheets (CSs) in shaping the spectrum of turbulent fluctuations and driving dissipation processes in space plasma. Local non-adiabatic heating and acceleration of charged particles in the solar wind is one of the most intriguing challenges in space physics. Leading theories attribute these effects to turbulent heating, often associated with magnetic reconnection at small-scale coherent structures in the solar wind, such as CSs and flux ropes. We identify CSs observed at 1 AU in different types of the solar wind around and within an interplanetary coronal mass ejection (ICME) and analyze the corresponding characteristics of the turbulent cascade. It is found that the spectra of fluctuations of the interplanetary magnetic field may be reshaped due to the CS impact potentially leading to local disruptions in energy transfer along the cascade of turbulent fluctuations. Case studies of the spectra behavior at the peak of the CS number show their steepening at MHD scales, flattening at kinetic scales, and merging of the spectra into a single form, with the break almost disappearing. In the broader vicinity of the CS number peak, the behavior of spectral parameters changes sharply, but not always following the same pattern. The statistical analysis shows a clear correlation between the break frequency and the CS number. These results are consistent with the picture of turbulent reconnection at CSs. The CS occurrence is found to be statistically linked with the increased temperature. In the ICME sheath, there are two CS populations observed in the hottest and coldest plasma. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|