Autor: |
Zahra Gharineiat, Fayez Tarsha Kurdi, Krish Henny, Hamish Gray, Aaron Jamieson, Nicholas Reeves |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 17, p 3256 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16173256 |
Popis: |
The Simultaneous Localization and Mapping (SLAM) scanner is an easy and portable Light Detection and Ranging (LiDAR) data acquisition device. Its main output is a 3D point cloud covering the scanned scene. Regarding the importance of accuracy in the survey domain, this paper aims to assess the accuracy of two SLAM scanners: the NavVis VLX and the BLK2GO scanner. This assessment is conducted for both outdoor and indoor environments. In this context, two types of reference data were used: the total station (TS) and the static scanner Z+F Imager 5016. To carry out the assessment, four comparisons were tested: cloud-to-cloud, cloud-to-mesh, mesh-to-mesh, and edge detection board assessment. However, the results of the assessments confirmed that the accuracy of indoor SLAM scanner measurements (5 mm) was greater than that of outdoor ones (between 10 mm and 60 mm). Moreover, the comparison of cloud-to-cloud provided the best accuracy regarding direct accuracy measurement without manipulations. Finally, based on the high accuracy, scanning speed, flexibility, and the accuracy differences between tested cases, it was confirmed that SLAM scanners are effective tools for data acquisition. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|