Existencia y Dependencia Continua de la Solución de la Ecuación de Onda no Homogénea en Espacios de Sobolev Periódico

Autor: Yolanda Santiago Ayala, Santiago Rojas Romero
Jazyk: Spanish; Castilian
Rok vydání: 2020
Předmět:
Zdroj: Selecciones Matemáticas, Vol 7, Iss 01, Pp 52-73 (2020)
Druh dokumentu: article
ISSN: 2411-1783
DOI: 10.17268/sel.mat.2020.01.06
Popis: In this article, we first prove that the initial value problem associated to the homogeneous wave equation in periodic Sobolev spaces has a global solution and the solution has continuous dependence with respect to the initial data, in [0; T], T > 0. We do this in an intuitive way using Fourier theory and in a fine version introducing families of strongly continuous operators, inspired by the works of Iorio [4] and Santiago and Rojas [7]. Also, we prove that the energy associated to the wave equation is conservative in intervals [0; T], T > 0. As a final result, we prove that the initial value problem associated to the non homogeneous wave equation has a local solution and the solution has continuous dependence with respect to the initial data and the non homogeneous part of the problem.
Databáze: Directory of Open Access Journals