Autor: |
Drawin Stefan, Deborde Agathe, Thomas Marc, Pierronnet Michel, Sasaki Layla, Delfosse Jérôme, Godde Olivier |
Jazyk: |
English<br />French |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
MATEC Web of Conferences, Vol 321, p 07013 (2020) |
Druh dokumentu: |
article |
ISSN: |
2261-236X |
DOI: |
10.1051/matecconf/202032107013 |
Popis: |
Titanium alloy powders, mostly the Ti-64 alloy with composition Ti-6Al-4V (wt.%), are extensively used for biomedical and high-demanding applications, e.g. in aeronautics. Advanced powder metallurgy processes like additive manufacturing are strong drivers for the production of high quality powders, insuring a good rheological behavior, a low porosity level in the parts and an adequate roughness. Ideally, fine spherical particles with no volume and surface defects are aimed at. Inert gas atomization is a process that is able to produce clean powders for such applications, especially for AM. To avoid the chemical reaction of titanium with the commonly used alumina crucibles, a crucible-free configuration has been designed in the EIGA process (Electrode induction melting Inert Gas Atomization). Two EIGA facilities are currently available in France for R&D purposes: a one-liter (nominal rod diameter/length (mm): 50/500) labscale facility at ONERA and an eight-liter capacity (100/1000) industrial-scale facility at the MetaFensch Institute. Using the smaller facility to screen and optimize atomization parameters and transfer them to the bigger facility is a tempting approach. This communication will show the characteristics of Ti-64 powders produced in both facilities, in terms of particle shape, particle size distribution, presence of satellites and porous particles. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|