Autor: |
Iyll-Joon Doh, Huisung Kim, Jennifer Sturgis, Bartek Rajwa, J Paul Robinson, Euiwon Bae |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 16, Iss 2, p e0247721 (2021) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0247721 |
Popis: |
A single instrument that includes multiple optical channels was developed to simultaneously measure various optical and associated biophysical characteristics of a bacterial colony. The multi-channel device can provide five distinct optical features without the need to transfer the sample to multiple locations or instruments. The available measurement channels are bright-field light microscopy, 3-D colony-morphology map, 2-D spatial optical-density distribution, spectral forward-scattering pattern, and spectral optical density. The series of multiple morphological interrogations is beneficial in understanding the bio-optical features of a bacterial colony and the correlations among them, resulting in an enhanced power of phenotypic bacterial discrimination. To enable a one-shot interrogation, a confocal laser scanning module was built as an add-on to an upright microscope. Three different-wavelength diode lasers were used for the spectral analysis, and high-speed pin photodiodes and CMOS sensors were utilized as detectors to measure the spectral OD and light-scatter pattern. The proposed instrument and algorithms were evaluated with four bacterial genera, Escherichia coli, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus; their resulting data provided a more complete picture of the optical characterization of bacterial colonies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|