Autor: |
G. Salerno, G. Palumbo, N. Goldman, M. Di Liberto |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Physical Review Research, Vol 2, Iss 1, p 013348 (2020) |
Druh dokumentu: |
article |
ISSN: |
2643-1564 |
DOI: |
10.1103/PhysRevResearch.2.013348 |
Popis: |
Bound states of two interacting particles moving on a lattice can exhibit remarkable features that are not captured by the underlying single-particle picture. Inspired by this phenomenon, we introduce a novel framework by which genuine interaction-induced geometric and topological effects can be realized in quantum-engineered systems. Our approach builds on the design of effective lattices for the center-of-mass motion of two-body bound states (doublons), which can be created through long-range interactions. This general scenario is illustrated in several examples, where flat-band localization, topological pumps, and higher-order topological corner modes emerge from genuine interaction effects. Our results pave the way for the exploration of interaction-induced topological effects in a variety of platforms, ranging from ultracold gases to interacting photonic devices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|