On the determining number of some graphs
Autor: | Mojgan Afkhami, Tayyebeh Amouzegar, Kazem Khashyarmanesh, Meysam Korivand |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | AKCE International Journal of Graphs and Combinatorics, Pp 1-12 (2024) |
Druh dokumentu: | article |
ISSN: | 09728600 2543-3474 0972-8600 |
DOI: | 10.1080/09728600.2024.2365338 |
Popis: | A subset S of vertices of a graph G is a determining set for G if every automorphism of G is uniquely determined by its action on S. The determining number of a graph G is the smallest integer r such that G has a determining set of size r. In this paper, we study the determining number of edge-corona product, hierarchical product of graphs and the determining number of blow-up of some graphs. Also, we investigate the determining number of the zero divisor graph of the ring [Formula: see text], for some values of n. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |