Autor: |
Marco Cantarini, Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 1, p 63 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10010063 |
Popis: |
In this paper, we consider the max-product neural network operators of the Kantorovich type based on certain linear combinations of sigmoidal and ReLU activation functions. In general, it is well-known that max-product type operators have applications in problems related to probability and fuzzy theory, involving both real and interval/set valued functions. In particular, here we face inverse approximation problems for the above family of sub-linear operators. We first establish their saturation order for a certain class of functions; i.e., we show that if a continuous and non-decreasing function f can be approximated by a rate of convergence higher than 1/n, as n goes to +∞, then f must be a constant. Furthermore, we prove a local inverse theorem of approximation; i.e., assuming that f can be approximated with a rate of convergence of 1/n, then f turns out to be a Lipschitz continuous function. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|