Autor: |
Zhen Gao, Danning Li, Danni Wang, Zengcai Yu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 14, Iss 11, p 4375 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app14114375 |
Popis: |
The raw material purchasing (RMP) problem is to determine the purchasing quantities of raw materials in given periods or cycles. Raw material purchasing optimization is crucial for large-scale steel plants because it is closely related to the supply of raw materials and cost savings. The raw material purchasing of large-scale steel enterprises is characterized by many varieties, large quantities, and high costs. The RMP objective is to minimize the total purchasing cost, consisting of the price of raw materials, purchasing set-up costs, and inventory costs, and meet product demand. We present a mixed integer linear programming (MILP) model and a column generation (CG) solution for the resulting optimization problem. The column generation algorithm is the generalization of the branch and bound algorithm while solving the linear programming (LP) relaxation of MILP using column generation (CG), and its advantage is to handle large-sized MILPs. Experimental results show the effectiveness and efficiency of the solution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|