Autor: |
Pagalay Usman, Juhari, Ayuna Hustani Sindi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
ITM Web of Conferences, Vol 58, p 01008 (2024) |
Druh dokumentu: |
article |
ISSN: |
2271-2097 |
DOI: |
10.1051/itmconf/20245801008 |
Popis: |
This study discusses the dynamic analysis, the Hopf bifurcation, and numerical simulations. The mathematical model of the anti-tumor immune response consists of three compartments namely Immature T Lymphocytes (L1), Mature T Lymphocytes (L2) and Tumor Cells (T). This research was conducted to represent the behavior between immune cells and tumor cells in the body with five γ conditions. Where γ is the intrinsic growth rate of mature T lymphocytes. This study produces R0 > 1 in conditions 1 to 4 while in condition 5 produces R0 < 1. The disease-free equilibrium point is stable only in condition 5, while the endemic equilibrium point is stable only in conditions 2 and 4. Hopf bifurcation occurs at the endemic equilibrium point. Numerical simulation graph in condition 1 shows that tumor cells will increase uncontrollably. In condition 2 the graph show that the endemic equilibrium point for large tumors is stable. In condition 3 the graph show that there will be a bifurcation from the endemic equilibrium point by the disturbance of the parameter value γ. In condition 4 the graph show the small tumor endemic equilibrium point is stable. Finally, in condition 5, the graph show a stable disease-free equilibrium point. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|