Popis: |
The Wiener index W(G) of a connected graph G, introduced by Wiener in 1947, is defined as W(G) =∑u,v∈V (G)dG(u, v), where dG(u, v) is the distance (the length a shortest path) between the vertices u and v in G. For S ⊆ V (G), the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index SWk(G) of G is defined as SWk(G)=∑S⊆V(G)|S|=kd(S)$SW_k (G) = \sum\nolimits_{\mathop {S \subseteq V(G)}\limits_{|S| = k} } {d(S)}$ . We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order n ≥ k such that SWk(G) = w (or SWk(T) = w)? In this paper, we give some solutions to this problem. |