Dynamic surface control for omnidirectional mobile robot with full state constrains and input saturation
Autor: | Chen Zhiqiang, Aleksandr Yu. Krasnov, Liao Duzhesheng, Yang Qiusheng |
---|---|
Jazyk: | English<br />Russian |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki, Vol 23, Iss 6, Pp 1096-1105 (2023) |
Druh dokumentu: | article |
ISSN: | 2226-1494 2500-0373 |
DOI: | 10.17586/2226-1494-2023-23-6-1096-1105 |
Popis: | In this paper, we study the trajectory tracking problem of a three-wheeled omnidirectional mobile robot with full state constraints and actuator saturation. Firstly, we analyze a three-wheeled omnidirectional mobile robot and give control model with actuator saturation. By using tan-type Barrier Lyapunov Function and backstepping method, kinematic and dynamic controllers are built, which can ensure that the system full states will not violate the given constraints when the robot is performing trajectory tracking. Then, considering the differential explosion problem which occurs when solving the derivatives of the virtual control law, we use a second-order differential sliding mode surface to calculate it, so as to reduce the complexity of the operation. In addition, due to the output saturation problem of the robot drive motor, an auxiliary compensation system is adopted to compensate for the error generated by the saturation function. Finally, an experimental simulation is performed in MATLAB and the simulation results illustrate the effectiveness of the control algorithm proposed in this paper. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |