Autor: |
Hidemasa Torii, Toshihide Kurihara, Yuko Seko, Kazuno Negishi, Kazuhiko Ohnuma, Takaaki Inaba, Motoko Kawashima, Xiaoyan Jiang, Shinichiro Kondo, Maki Miyauchi, Yukihiro Miwa, Yusaku Katada, Kiwako Mori, Keiichi Kato, Kinya Tsubota, Hiroshi Goto, Mayumi Oda, Megumi Hatori, Kazuo Tsubota |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
EBioMedicine, Vol 15, Iss C, Pp 210-219 (2017) |
Druh dokumentu: |
article |
ISSN: |
2352-3964 |
DOI: |
10.1016/j.ebiom.2016.12.007 |
Popis: |
Prevalence of myopia is increasing worldwide. Outdoor activity is one of the most important environmental factors for myopia control. Here we show that violet light (VL, 360–400 nm wavelength) suppresses myopia progression. First, we confirmed that VL suppressed the axial length (AL) elongation in the chick myopia model. Expression microarray analyses revealed that myopia suppressive gene EGR1 was upregulated by VL exposure. VL exposure induced significantly higher upregulation of EGR1 in chick chorioretinal tissues than blue light under the same conditions. Next, we conducted clinical research retrospectively to compare the AL elongation among myopic children who wore eyeglasses (VL blocked) and two types of contact lenses (partially VL blocked and VL transmitting). The data showed the VL transmitting contact lenses suppressed myopia progression most. These results suggest that VL is one of the important outdoor environmental factors for myopia control. Since VL is apt to be excluded from our modern society due to the excessive UV protection, VL exposure can be a preventive strategy against myopia progression. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|