Coupling of biogas residue biochar and low-magnitude electric fields promotes anaerobic co-digestion of sewage sludge and food waste

Autor: Hongbo Liu, Peng He, Yang Chen, Xingkang Wang, Ruixiang Zou, Tao Xing, Suyun Xu, Chengyang Wu, Claudia Maurer, Eric Lichtfouse
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Water Science and Technology, Vol 89, Iss 8, Pp 2118-2131 (2024)
Druh dokumentu: article
ISSN: 0273-1223
1996-9732
DOI: 10.2166/wst.2024.120
Popis: Biochar-assisted anaerobic digestion (AD) remains constrained due to the inefficient decomposition of complex organics, even with the direct interspecies electron transfer (DIET) pathway. The coupling of electrochemistry with the anaerobic biological treatment could shorten lengthy retention time in co-digestion by improving electron transfer rates and inducing functional microbial acclimation. Thus, this work investigated the potential of improving the performance of AD by coupling low-magnitude electric fields with biochar derived from the anaerobically digested biogas residue. Different voltages (0.3, 0.6, and 0.9 V) were applied at various stages to assess the impact on biochar-assisted AD. The results indicate that an external voltage of 0.3 V, coupled with 5 g/L of biochar, elevates CH4 yield by 45.5% compared to biogas residue biochar alone, and the coupled approach increased biogas production by up to 143% within 10 days. This finding may be partly explained by the enhanced utilization of substrates and the increased amounts of specific methanogens such as Methanobacterium and Methanosarcina. The abundance of the former increased from 4.0 to 11.3%, which enhances the DIET between microorganisms. Furthermore, the coupling method shows better potential for enhancing AD compared to preparing iron-based biochar, and these results present potential avenues for its broader applications. HIGHLIGHTS Biochar coupled with electric fields was used to enhance AD.; Coupling of biogas residue biochar and electric fields accelerated the initiation of AD.; The coupled approach improved biogas production by 143% within 10 days.; The abundance of DIET-mediated Methanobacterium was improved to 11.27%.;
Databáze: Directory of Open Access Journals