Relationships between Strength, Ductility and Fracture Toughness in a 0.33C Steel after Quenching and Partitioning (Q&P) Treatment

Autor: Evgeniy Tkachev, Sergey Borisov, Yuliya Borisova, Tatiana Kniaziuk, Rustam Kaibyshev
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Crystals, Vol 13, Iss 10, p 1431 (2023)
Druh dokumentu: article
ISSN: 2073-4352
DOI: 10.3390/cryst13101431
Popis: The effect of quenching and partitioning (Q&P) processing on strength, ductility and fracture toughness is considered in a 0.33% C-1.8% Si-1.44 Mn-0.58% Cr steel. The steel was fully austenitized at 900 °C and quenched to 210 °C for 30 s. Partitioning at 350 °C for 600 s produces a martensitic matrix with transition carbides, bainitic ferrite and film-like retained austenite (RA) that is stable against transformation to strain-induced martensite under tension. This processing provided the highest strength and fracture toughness but the lowest ductility and product of strength and elongation (PSE), σB·δ (MPa·%). Partitioning at 500 °C produced RA with a relatively low carbon content and low volume fraction of carbides. The steel after this Q&P processing exhibits the highest ductility and PSE but low YS and Charpy V-notch (CVN) impact toughness. High ductility and PSE correlate with the ability of RA to transform into strain-induced martensite, while high strength and impact toughness are associated with the high-volume fraction of transition carbides in the carbon-depleted martensitic matrix and a lack of transformation of RA to strain-induced martensite. The highest CVN impact energy was attained in the steel exhibiting transgranular quasi-cleavage fracture with the lowest effective grain size for brittle fracture. No correlation between strength, ductility and fracture toughness is observed in Q&P steels if these materials have distinct structural constituents.
Databáze: Directory of Open Access Journals