Autor: |
Andrew Sayad, Yusuf Oduntan, Norbert Bokros, Seth DeBolt, Alice Benzecry, Daniel J. Robertson, Christopher J. Stubbs |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Plant Methods, Vol 19, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: |
article |
ISSN: |
1746-4811 |
DOI: |
10.1186/s13007-023-00979-2 |
Popis: |
Abstract This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|