Autor: |
Giulia Irene Maria Pasquesi, Conor J. Kelly, Andrea D. Ordonez, Edward B. Chuong |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mobile DNA, Vol 13, Iss 1, Pp 1-17 (2022) |
Druh dokumentu: |
article |
ISSN: |
1759-8753 |
DOI: |
10.1186/s13100-022-00277-z |
Popis: |
Abstract Background Bats are a major reservoir of zoonotic viruses, and there has been growing interest in characterizing bat-specific features of innate immunity and inflammation. Recent studies have revealed bat-specific adaptations affecting interferon (IFN) signaling and IFN-stimulated genes (ISGs), but we still have a limited understanding of the genetic mechanisms that have shaped the evolution of bat immunity. Here we investigated the transcriptional and epigenetic dynamics of transposable elements (TEs) during the type I IFN response in little brown bat (Myotis lucifugus) primary embryonic fibroblast cells, using RNA-seq and CUT&RUN. Results We found multiple bat-specific TEs that undergo both locus-specific and family-level transcriptional induction in response to IFN. Our transcriptome reassembly identified multiple ISGs that have acquired novel exons from bat-specific TEs, including NLRC5, SLNF5 and a previously unannotated isoform of the IFITM2 gene. We also identified examples of TE-derived regulatory elements, but did not find strong evidence supporting genome-wide epigenetic activation of TEs in response to IFN. Conclusion Collectively, our study uncovers numerous TE-derived transcripts, proteins, and alternative isoforms that are induced by IFN in Myotis lucifugus cells, highlighting candidate loci that may contribute to bat-specific immune function. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|