Operator upper bounds for Davis-Choi-Jensen's difference in Hilbert spaces
Autor: | Dragomir Silvestru Sever |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Mathematica Moravica, Vol 28, Iss 1, Pp 39-51 (2024) |
Druh dokumentu: | article |
ISSN: | 1450-5932 2560-5542 |
DOI: | 10.5937/MatMor2401039S |
Popis: | In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference Ph (f (A)) - f (Ph (A)) for any convex function f : I → R, any selfadjoint operator A in H with the spectrum Sp (A) ⊂ I and any linear, positive and normalized map Ph : B (H) → B (K), where H and K are Hilbert spaces. Some examples of convex and operator convex functions are also provided. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |