Operator upper bounds for Davis-Choi-Jensen's difference in Hilbert spaces

Autor: Dragomir Silvestru Sever
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematica Moravica, Vol 28, Iss 1, Pp 39-51 (2024)
Druh dokumentu: article
ISSN: 1450-5932
2560-5542
DOI: 10.5937/MatMor2401039S
Popis: In this paper we obtain several operator inequalities providing upper bounds for the Davis-Choi-Jensen's Difference Ph (f (A)) - f (Ph (A)) for any convex function f : I → R, any selfadjoint operator A in H with the spectrum Sp (A) ⊂ I and any linear, positive and normalized map Ph : B (H) → B (K), where H and K are Hilbert spaces. Some examples of convex and operator convex functions are also provided.
Databáze: Directory of Open Access Journals