Autor: |
Antonio Coscia, Andrea Iannacone, Antonio Maci, Alessandro Stamerra |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Information, Vol 15, Iss 8, p 425 (2024) |
Druh dokumentu: |
article |
ISSN: |
2078-2489 |
DOI: |
10.3390/info15080425 |
Popis: |
Reports produced by popular malware analysis services showed a disparity in samples available for different malware families. The unequal distribution between such classes can be attributed to several factors, such as technological advances and the application domain that seeks to infect a computer virus. Recent studies have demonstrated the effectiveness of deep learning (DL) algorithms when learning multi-class classification tasks using imbalanced datasets. This can be achieved by updating the learning function such that correct and incorrect predictions performed on the minority class are more rewarded or penalized, respectively. This procedure can be logically implemented by leveraging the deep reinforcement learning (DRL) paradigm through a proper formulation of the Markov decision process (MDP). This paper proposes SINNER, i.e., a DRL-based multi-class classifier that approaches the data imbalance problem at the algorithmic level by exploiting a redesigned reward function, which modifies the traditional MDP model used to learn this task. Based on the experimental results, the proposed formula appears to be successful. In addition, SINNER has been compared to several DL-based models that can handle class skew without relying on data-level techniques. Using three out of four datasets sourced from the existing literature, the proposed model achieved state-of-the-art classification performance. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|