Popis: |
Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process, but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage (CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage (SCT, tillage to a depth of 15 cm), inversion tillage (IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage (SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil. In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol. |