Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data

Autor: Elemine Vall Mohamed Saad Bouh, A. Ahmed, A. Touzani, A. Benkirane
Jazyk: English<br />Portuguese
Rok vydání: 2018
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 1, Pp 125-150 (2018)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v36i1.29440
Popis: We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions operator defined in $D(A)\subset W^{1}_{0}L_\varphi(\Omega) \rightarrow W^{-1}_{0}L_\psi(\Omega)$, the right hand side belongs in $ L^{1}(\Omega)$, and $\phi\in C^{0}(\mathbb{R},\mathbb{R}^N)$, without assuming the $\Delta_{2}$-condition on the Musielak function.
Databáze: Directory of Open Access Journals