Popis: |
Abalone is a rich source of nutrition, the viscera of which are discarded as by-product during processing. This study explored the biological activities of peptides derived from abalone viscera (AV). Trypsin-hydrolysate of AV (TAV) was purified into three fractions using a Sephadex G-10 column. Nine bioactive peptides (VAR, NYER, LGPY, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, LDW, and NLGEW) derived from TAV-F2 were sequenced. LGPY, VTPGLQY, LGEW, LDW, and NLGEW exhibited antioxidant properties, with IC50 values of 0.213, 0.297, 0.289, 0.363, and 0.303 mg/mL, respectively. In vitro analysis determined that the peptides VAR, NYER, VTPGLQY, QFPVGR, LGEW, QLQFPVGR, and NLGEW inhibited ACE, with IC50 values of 0.104, 0.107, 0.023, 0.023, 0.165, 0.004, and 0.146 mg/mL, respectively. The binding interactions of ACE-bioactive peptide complexes were investigated using docking analysis with the ZDCOK server. VTPGLQT interacted with HIS513 and TYR523, and QLQFPVGR interacted with HIS353, ALA354, GLU384, HIS513, and TYR523, contributing to the inhibition of ACE activity. They also interacted with amino acids that contribute to stability by binding to zinc ions. QFPVGR may form complexes with ACE surface sites, suggesting indirect inhibition. These results indicate that AV is a potential source of bioactive peptides with dual antioxidant and anti-hypertensive dual effects. |