Energy Conditions for Hamiltonicity of Graphs
Autor: | Guidong Yu, Gaixiang Cai, Miaolin Ye, Jinde Cao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Discrete Dynamics in Nature and Society, Vol 2014 (2014) |
Druh dokumentu: | article |
ISSN: | 1026-0226 1607-887X |
DOI: | 10.1155/2014/305164 |
Popis: | Let G be an undirected simple graph of order n. Let A(G) be the adjacency matrix of G, and let μ1(G)≤μ2(G)≤⋯≤μn(G) be its eigenvalues. The energy of G is defined as ℰ(G)=∑i=1n|μi(G)|. Denote by GBPT a bipartite graph. In this paper, we establish the sufficient conditions for G having a Hamiltonian path or cycle or to be Hamilton-connected in terms of the energy of the complement of G, and give the sufficient condition for GBPT having a Hamiltonian cycle in terms of the energy of the quasi-complement of GBPT. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |