Autor: |
Petro Junior Milan, Hongqian Rong, Craig Michaud, Naoufal Layad, Zhengchun Liu, Ryan Coffee |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Physics, Vol 10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2296-424X |
DOI: |
10.3389/fphy.2022.958120 |
Popis: |
The emergence of novel computational hardware is enabling a new paradigm for rapid machine learning model training. For the Department of Energy’s major research facilities, this developing technology will enable a highly adaptive approach to experimental sciences. In this manuscript we present the per-epoch and end-to-end training times for an example of a streaming diagnostic that is planned for the upcoming high-repetition rate x-ray Free Electron Laser, the Linac Coherent Light Source-II. We explore the parameter space of batch size and data parallel training across multiple Graphics Processing Units and Reconfigurable Dataflow Units. We show the landscape of training times with a goal of full model retraining in under 15 min. Although a full from scratch retraining of a model may not be required in all cases, we nevertheless present an example of the application of emerging computational hardware for adapting machine learning models to changing environments in real-time, during streaming data acquisition, at the rates expected for the data fire hoses of accelerator-based user facilities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|