Popis: |
Abstract Activated carbon (AC) is becoming the limelight due to its widespread application as an adsorbent for wastewater treatment, gases, and catalysis. However, its high consumption and price have drawn more attention to the sustainable use of natural resources as precursor for AC production. This study focuses on synthesising AC from two types of oil palm trunk (OPT) fibres, a significant agricultural waste products produced by Malaysia's thriving palm oil industries. The BET surface area of about 2057.9 m2 g−1 was achieved by chemical activation with phosphoric acid (H3PO4). The efficiency of the synthesised AC was critically analysed based on the adsorption experiments with methylene blue (MB) by varying several parameters (dosage of adsorbent, pH, initial dye concentration, and temperature of the solution) to elucidate the adsorption mechanism(s). A maximum adsorption capacity of 320.4 mg g−1 at 50 °C was achieved, and the Temkin (r2 = 0.98, 0.95, 0.95) and Langmuir (r2 = 0.94, 0.93, 0.95) isotherm models fitted the adsorption process better than the Freundlich (r2 = 0.95, 0.90, 0.86) model. Besides, the pseudo-second-order model (r2 > 0.90) best described the adsorption process, favouring chemisorption over physisorption. Thermodynamics showed MB adsorption on AC was spontaneous except at the highest dye concentration. It was exothermic at lower dye concentrations (50 and 100 mg L−1) and endothermic at higher ones (300, 500, and 700 mg L−1). In a nutshell, this study reveals that OPT fibre is a promising precursor for synthesising highly porous AC for the adsorption of MB dye. |