Deep-Learning-Based Complex Scene Text Detection Algorithm for Architectural Images

Autor: Weiwei Sun, Huiqian Wang, Yi Lu, Jiasai Luo, Ting Liu, Jinzhao Lin, Yu Pang, Guo Zhang
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 20, p 3914 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10203914
Popis: With the advent of smart cities, the text information in an image can be accurately located and recognized, and then applied to the fields of instant translation, image retrieval, card surface information recognition, and license plate recognition. Thus, people’s lives and work will become more convenient and comfortable. Owing to the varied orientations, angles, and shapes of text, identifying textual features from images is challenging. Therefore, we propose an improved EAST detector algorithm for detecting and recognizing slanted text in images. The proposed algorithm uses reinforcement learning to train a recurrent neural network controller. The optimal fully convolutional neural network structure is selected, and multi-scale features of text are extracted. After importing this information into the output module, the Generalized Intersection over Union algorithm is used to enhance the regression effect of the text bounding box. Next, the loss function is adjusted to ensure a balance between positive and negative sample classes before outputting the improved text detection results. Experimental results indicate that the proposed algorithm can address the problem of category homogenization and improve the low recall rate in target detection. When compared with other image detection algorithms, the proposed algorithm can better identify slanted text in natural scene images. Finally, its ability to recognize text in complex environments is also excellent.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje