Autor: |
Ghada Ali, Nawab Hussain, Abdelhamid Moussaoui |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 16, Iss 5, p 627 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym16050627 |
Popis: |
In this study, we prove the existence and uniqueness of a best proximity point in the setting of non-Archimedean modular metric spaces via the concept of simulation functions. A non-Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore, for each value of the parameter, the positivity, the symmetry, the triangle inequality, or the continuity is ensured. Also, we demonstrate how analogous theorems in modular metric spaces may be used to generate the best proximity point results in triangular fuzzy metric spaces. The utility of our findings is further demonstrated by certain examples, illustrated consequences, and an application to fuzzy fractional differential equations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|