Autor: |
Austin Williams, Noah Walton, Austin Maryanski, Sandra Bogetic, Wes Hines, Vladimir Sobes |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-32112-7 |
Popis: |
Abstract The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a stochastic nature. This analysis uses challenge problems constructed to verify if ADAM is a suitable tool to optimize k-eigenvalue nuclear systems. ADAM is able to successfully optimize nuclear systems using the gradients of k-eigenvalue problems despite their stochastic nature and uncertainty. Furthermore, it is clearly demonstrated that low-compute time, high-variance estimates of the gradient lead to better performance in the optimization challenge problems tested here. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|