Stochastic gradient descent for optimization for nuclear systems

Autor: Austin Williams, Noah Walton, Austin Maryanski, Sandra Bogetic, Wes Hines, Vladimir Sobes
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-32112-7
Popis: Abstract The use of gradient descent methods for optimizing k-eigenvalue nuclear systems has been shown to be useful in the past, but the use of k-eigenvalue gradients have proved computationally challenging due to their stochastic nature. ADAM is a gradient descent method that accounts for gradients with a stochastic nature. This analysis uses challenge problems constructed to verify if ADAM is a suitable tool to optimize k-eigenvalue nuclear systems. ADAM is able to successfully optimize nuclear systems using the gradients of k-eigenvalue problems despite their stochastic nature and uncertainty. Furthermore, it is clearly demonstrated that low-compute time, high-variance estimates of the gradient lead to better performance in the optimization challenge problems tested here.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje