Autor: |
Bingyu Yin, Linjie Xu, Jianping Li, Yunxiao Zheng, Weibin Song, Peng Hou, Liying Zhu, Xiaoyan Jia, Yongfeng Zhao, Wei Song, Jinjie Guo |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Agriculture, Vol 14, Iss 6, p 958 (2024) |
Druh dokumentu: |
article |
ISSN: |
2077-0472 |
DOI: |
10.3390/agriculture14060958 |
Popis: |
Maize Ustilago maydis is a disease that severely affects maize yield and quality. In this paper, we employed transcriptome sequencing and GWAS analysis to identify candidate genes and reveal disease-resistant germplasm resources, thereby laying the foundation for further analysis of the molecular mechanism of maize Ustilago maydis resistance and genetic improvement. The results of transcriptome sequencing revealed that a considerable number of receptor kinase genes, signal-transduction-related protein genes, redox-response-related genes, WRKYs, and P450s genes were significantly upregulated. There was a wide range of mutations of Ustilago maydis in maize inbred lines. Thirty-two high-resistance maize inbred lines were selected, and 16 SNPs were significantly associated with the disease index. By integrating the results of GWAS and RNA-seq, five genes related to disease resistance were identified, encoding the chitinase 1 protein, fatty acid elongase (FAE), IAA9, GATA TF8, and EREB94, respectively. It provides a certain reference for the cloning of maize anti-tumor smut genes and the breeding of new varieties. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|