Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain

Autor: Keqiang Li, Shangjiu Wang, Shaoyong Li
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 6, Pp 10860-10866 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022607?viewType=HTML
Popis: In this paper, we consider the solutions of the boundary blow-up problem $ \begin{eqnarray*} \begin{cases} \Delta u = \frac{1}{u^\gamma} +f(u) \ \ \ \ \mathrm{in}\ \ \ \Omega,\\ \ u>0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{in}\ \ \ \Omega, \\ \ u = +\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{on} \ \ \partial\Omega, \end{cases} \end{eqnarray*} $ where $ \gamma > 0, \ \Omega $ is a bounded convex smooth domain and symmetric w.r.t. a direction. $ f $ is a locally Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions of the problem above by the moving planes method. A maximum principle in narrow domains plays an important role in proof of the main result.
Databáze: Directory of Open Access Journals