Autor: |
Anke Fluhrer, Thomas Jagdhuber, Alireza Tabatabaeenejad, Hamed Alemohammad, Carsten Montzka, Peter Friedl, Ehsan Forootan, Harald Kunstmann |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 14, Iss 12, p 2755 (2022) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs14122755 |
Popis: |
A P-band SAR moisture estimation method is introduced for complex soil permittivity and penetration depth estimation using fully polarimetric P-band SAR signals. This method combines eigen- and model-based decomposition techniques for separation of the total backscattering signal into three scattering components (soil, dihedral, and volume). The incorporation of a soil scattering model allows for the first time the estimation of complex soil permittivity and permittivity-based penetration depth. The proposed method needs no prior assumptions on land cover characteristics and is applicable to a variety of vegetation types. The technique is demonstrated for airborne P-band SAR measurements acquired during the AirMOSS campaign (2012–2015). The estimated complex permittivity agrees well with climate and soil conditions at different monitoring sites. Based on frequency and permittivity, P-band penetration depths vary from 5 cm to 35 cm. This value range is in accordance with previous studies in the literature. Comparison of the results is challenging due to the sparsity of vertical soil in situ sampling. It was found that the disagreement between in situ measurements and SAR-based estimates originates from the discrepancy between the in situ measuring depth of the top-soil layer (0–5 cm) and the median penetration depth of the P-band waves (24.5–27 cm). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|