Degree distance and Gutman index of increasing trees

Autor: Ramin Kazemi, Leila Meimondari
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Transactions on Combinatorics, Vol 5, Iss 2, Pp 23-31 (2016)
Druh dokumentu: article
ISSN: 2251-8657
2251-8665
Popis: ‎‎The Gutman index and degree distance of a connected graph G G are defined as‎ ‎‎‎Gut(G)=∑ {u,v}⊆V(G) d(u)d(v)d G (u,v)‎,‎ ‎‎Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v)‎,‎‎ ‎and‎ ‎‎‎DD(G)=∑ {u,v}⊆V(G) (d(u)+d(v))d G (u,v)‎,‎ ‎‎DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v)‎,‎‎ ‎respectively‎, ‎where‎ ‎d(u) d(u) is the degree of vertex u u and d G (u,v) dG(u,v) is the distance between vertices u u and v v‎. ‎In this paper‎, ‎through a recurrence equation for the Wiener index‎, ‎we study the first two‎ ‎moments of the Gutman index and degree distance of increasing‎ ‎trees‎.
Databáze: Directory of Open Access Journals