Degree distance and Gutman index of increasing trees
Autor: | Ramin Kazemi, Leila Meimondari |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Transactions on Combinatorics, Vol 5, Iss 2, Pp 23-31 (2016) |
Druh dokumentu: | article |
ISSN: | 2251-8657 2251-8665 |
Popis: | The Gutman index and degree distance of a connected graph G G are defined as Gut(G)=∑ {u,v}⊆V(G) d(u)d(v)d G (u,v), Gut(G)=∑{u,v}⊆V(G)d(u)d(v)dG(u,v), and DD(G)=∑ {u,v}⊆V(G) (d(u)+d(v))d G (u,v), DD(G)=∑{u,v}⊆V(G)(d(u)+d(v))dG(u,v), respectively, where d(u) d(u) is the degree of vertex u u and d G (u,v) dG(u,v) is the distance between vertices u u and v v. In this paper, through a recurrence equation for the Wiener index, we study the first two moments of the Gutman index and degree distance of increasing trees. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |