Heteroclinic solutions in singularly perturbed discontinuous differential equations: a non-generic case

Autor: Flaviano Battelli, Michal Fečkan, JinRong Wang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Electronic Journal of Qualitative Theory of Differential Equations, Vol 2024, Iss 27, Pp 1-30 (2024)
Druh dokumentu: article
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2024.1.27
Popis: We derive Melnikov type conditions for the persistence of heteroclinic solutions in perturbed slowly varying discontinuous differential equations. Opposite to [J. Differential Equations 400(2024), 314–375] we assume that the unperturbed (frozen) equation has a parametric system of heteroclinic solutions and extend a result in [SIAM J. Math. Anal. 18(1987), 612–629] and [SIAM J. Math. Anal. 19(1988), 1254–1255] to higher dimensional non-Hamiltonian discontinuous singularly perturbed differential equations.
Databáze: Directory of Open Access Journals