Fracture Behavior and Fatigue Performance of Inconel 625
Autor: | Fábio Gustavo Lima Pereira, Jorge Magner Lourenço, Rubens Maribondo do Nascimento, Nicolau Apoena Castro |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Materials Research, Vol 21, Iss 4 (2018) |
Druh dokumentu: | article |
ISSN: | 1516-1439 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2017-1089 |
Popis: | Inconel 625 is a nickel-based highly-resistant superalloy widely used in aerospace components, in the nuclear industry, and especially in the maritime industry. Materials such as Inconel 625 have been widely used in oil exploration of Brazilian pre-salt layers due to their excellent resistance to corrosion under tension, pitting and crevice corrosion by chloride and sulphide ions, and also because they are resistant to microbiological corrosion. All components used in the exploration of crude oil in these environments suffer mechanical fatigue from oceanic oscillations that naturally occur. Samples were precisely machined and tested under uniaxial tension and cyclic tension-compression fatigue following determinations of the ASTM E8M and ASTM E466 standards respectively, at a loading ratio of R = -1. Tensile strengths of 586, 472, 382 and 306 MPa were selected according to the yield strength of the material for raising the S-N curve. A macro and microstructural characterization regarding failure modes was performed revealing that fatigue striations predominated in the stable region of crack growth, whereas microvoids coalescence prevailed in the fast fracture zone. Inconel 625 presented a refined microstructure composed of equiaxial grains with a mean size of 14 µm, typical of refining obtained by hardening followed by recrystallization. The precipitation of MC type carbides (M=Mo or M=Nb) and Cr23C6 dispersed in the austenitic matrix of Inconel 625 controls a secondary alloy hardening mechanism. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |