Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet number in the eastern Mediterranean

Autor: P. Kalkavouras, A. Bougiatioti, N. Kalivitis, I. Stavroulas, M. Tombrou, A. Nenes, N. Mihalopoulos
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Atmospheric Chemistry and Physics, Vol 19, Pp 6185-6203 (2019)
Druh dokumentu: article
ISSN: 1680-7316
1680-7324
DOI: 10.5194/acp-19-6185-2019
Popis: A significant fraction of atmospheric particles that serve as cloud condensation nuclei (CCN) are thought to originate from the condensational growth of new particle formation (NPF) from the gas phase. Here, 7 years of continuous aerosol and meteorological measurements (June 2008 to May 2015) at a remote background site of the eastern Mediterranean were recorded and analyzed to assess the impact of NPF (of 162 episodes identified) on CCN and cloud droplet number concentration (CDNC) formation in the region. A new metric is introduced to quantitatively determine the initiation and duration of the influence of NPF on the CCN spectrum. NPF days were found to increase CCN concentrations (from 0.10 % to 1.00 % supersaturation) between 29 % and 77 %. Enhanced CCN concentrations from NPF are mostly observed, as expected, under low preexisting particle concentrations and occur in the afternoon, relatively later in the winter and autumn than in the summer. Potential impacts of NPF on cloud formation were quantified by introducing the observed aerosol size distributions and chemical composition into an established cloud droplet parameterization. We find that the supersaturations that develop are very low (ranging between 0.03 % and 0.27 %) for typical boundary layer dynamics (σw ∼0.3 m s−1) and NPF is found to enhance CDNC by a modest 13 %. This considerable contrast between CCN and CDNC response is in part from the different supersaturation levels considered, but also because supersaturation drops from increasing CCN because of water vapor competition effects during the process of droplet formation. The low cloud supersaturation further delays the appearance of NPF impacts on CDNC to clouds formed in the late evening and nighttime – which has important implications for the extent and types of indirect effects induced by NPF events. An analysis based on CCN concentrations using prescribed supersaturation can provide very different, even misleading, conclusions and should therefore be avoided. The proposed approach here offers a simple, yet highly effective way for a more realistic impact assessment of NPF events on cloud formation.
Databáze: Directory of Open Access Journals