Comparison analysis of Euclidean and Gower distance measures on k-medoids cluster

Autor: Agil Aditya, Betha Nurina Sari, Tesa Nur Padilah
Jazyk: English<br />Indonesian
Rok vydání: 2021
Předmět:
Zdroj: Jurnal Teknologi dan Sistem Komputer, Vol 9, Iss 1, Pp 1-7 (2021)
Druh dokumentu: article
ISSN: 2338-0403
DOI: 10.14710/jtsiskom.2020.13747
Popis: K-medoids clustering uses distance measurement to find and classify data that have similarities and inequalities. The distance measurement method selection can affect the clustering performance for a dataset. Several studies use the Euclidean and Gower distance as measurement methods in numerical data clustering. This study aims to compare the performance of the k-medoids clustering on a numerical dataset using the Euclidean and Gower distance. This study used seven numerical datasets and Silhouette, Dunn, and Connectivity indexes in the clustering evaluation. The Euclidean distance is superior in two values of Silhouette and Connectivity indexes so that Euclidean has a good data grouping structure, while the Gower is superior in Dunn index showing that the Gower has better cluster separation compared to Euclidean. This study shows that the Euclidean distance is superior to the Gower in applying the k-medoids algorithm with a numeric dataset.
Databáze: Directory of Open Access Journals