Autor: |
Yangfeixiao Liu, Wanshou Jiang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 5, p 731 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16050731 |
Popis: |
Oriented object detection for remote sensing images poses formidable challenges due to arbitrary orientation, diverse scales, and densely distributed targets (e.g., across terrain). Current investigations in remote sensing object detection have primarily focused on improving the representation of oriented bounding boxes yet have neglected the significant orientation information of targets in remote sensing contexts. Recent investigations point out that the inclusion and fusion of orientation information yields substantial benefits in training an accurate oriented object system. In this paper, we propose a simple but effective orientation information integrating (OII) network comprising two main parts: the orientation information highlighting (OIH) module and orientation feature fusion (OFF) module. The OIH module extracts orientation features from those produced by the backbone by modeling the frequency information of spatial features. Given that low-frequency components in an image capture its primary content, and high-frequency components contribute to its intricate details and edges, the transformation from the spatial domain to the frequency domain can effectively emphasize the orientation information of images. Subsequently, our OFF module employs a combination of a CNN attention mechanism and self-attention to derive weights for orientation features and original features. These derived weights are adopted to adaptively enhance the original features, resulting in integrated features that contain enriched orientation information. Given the inherent limitation of the original spatial attention weights in explicitly capturing orientation nuances, the incorporation of the introduced orientation weights serves as a pivotal tool to accentuate and delineate orientation information related to targets. Without unnecessary embellishments, our OII network achieves competitive detection accuracy on two prevalent remote sensing-oriented object detection datasets: DOTA (80.82 mAP) and HRSC2016 (98.32 mAP). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|