Entropy Optimization, Generalized Logarithms, and Duality Relations

Autor: Angel R. Plastino, Constantino Tsallis, Roseli S. Wedemann, Hans J. Haubold
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Entropy, Vol 24, Iss 12, p 1723 (2022)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e24121723
Popis: Several generalizations or extensions of the Boltzmann–Gibbs thermostatistics, based on non-standard entropies, have been the focus of considerable research activity in recent years. Among these, the power-law, non-additive entropies Sq≡k1−∑ipiqq−1(q∈R;S1=SBG≡−k∑ipilnpi) have harvested the largest number of successful applications. The specific structural features of the Sq thermostatistics, therefore, are worthy of close scrutiny. In the present work, we analyze one of these features, according to which the q-logarithm function lnqx≡x1−q−11−q(ln1x=lnx) associated with the Sq entropy is linked, via a duality relation, to the q-exponential function characterizing the maximum-entropy probability distributions. We enquire into which entropic functionals lead to this or similar structures, and investigate the corresponding duality relations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje